Options d’inscription

This series of lectures aims at describing the main problems data scientists and machine/statistical learners have to address (data visualization, dimension reduction, clustering, classification, prediction/regression tasks). For each of these tasks, we will cover several basic strategies that should serve as reference tools at the beginning of any analysis. 


The coming lectures are not "theoretical" ones since they do not contain systematic proofs of invovled (but still nice! ) theoretical results.

But their goal is nevertheless to provide guidelines (based on theoretical considerations) for a deeper understanding of the strategies that will be discussed.

For example, the best results are almost never achieved with the default choice of the parameters values. Tuning them carefully depending on the context is what makes the learning strategy work well.

Attente de validation: Non
Désactiver les captations: Non
clef Etudiante
clef Etudiante
clef Visiteur
clef Visiteur
Accessibilité

Couleur de fond Couleur de fond

Police Police

Crénage de la police Crénage de la police

Taille de police Taille de police

1

Visibilité de l’image Visibilité de l’image

Espacement des lettres Espacement des lettres

0

Hauteur de ligne Hauteur de ligne

1.2

Surbrillance de lien Surbrillance de lien

Alignement du texte Alignement du texte

Couleur de texte Couleur de texte